فلتر أسي تصف هذه الصفحة التصفية الأسية، وهي أبسط وأكثر المرشحات شعبية. هذا جزء من قسم التصفية الذي هو جزء من دليل للكشف عن الأخطاء والتشخيص .. نظرة عامة، ثابت الوقت، والمعادل التناظرية أبسط فلتر هو مرشح الأسي. لديها معلمة ضبط واحدة فقط (بخلاف الفاصل الزمني للعينة). وهو يتطلب تخزين متغير واحد فقط - الإخراج السابق. وهو مرشح إر (الانحدار الذاتي) - آثار تغيير المدخلات تسوس أضعافا مضاعفة حتى حدود شاشات العرض أو الكمبيوتر الحساب إخفاء ذلك. في مختلف التخصصات، ويشار إلى استخدام هذا الفلتر أيضا باسم 8220 استثنائية التمهيد 8221. في بعض التخصصات مثل تحليل الاستثمار، يسمى الفلتر الأسي 8220 المتوسط المتحرك المتوسط المرجح 8221 (إوما)، أو 8220 فقط المتحرك المتحرك المتوسط 8221 (إما). هذا يساء التقليدية أرما 8220moving المتوسط 8221 المصطلحات من تحليل سلسلة زمنية، لأنه لا يوجد تاريخ المدخلات التي يتم استخدامها - فقط المدخلات الحالية. وهو يعادل الوقت المنفصل ل 8220 فيرست النظام lag8221 يشيع استخدامها في النمذجة التناظرية من أنظمة التحكم في الوقت المستمر. في الدوائر الكهربائية، مرشح أرسي (مرشح مع المقاوم واحد ومكثف واحد) هو تأخر الدرجة الأولى. عند التشديد على التناظرية الدوائر التناظرية، معلمة ضبط واحد هو 8220time ثابت 8221، وعادة ما تكتب كما في حالة الحروف اليونانية تاو (). في الواقع، والقيم في أوقات عينة منفصلة تتطابق تماما مع الزمن المتساوي المستمر مع نفس الوقت ثابت. وترد العلاقة بين التنفيذ الرقمي والثابت الزمني في المعادلات أدناه. معادلات التصفية الأسية والتهيئة التصفية الأسية هي مزيج مرجح من التقدير السابق (الإخراج) مع أحدث بيانات المدخلات، مع مجموع الأوزان يساوي 1 بحيث الإخراج يطابق الإدخال في حالة مستقرة. بعد ترشيح المرشح الذي تم إدخاله بالفعل: y (k) أي (k-1) (1-a) x (k) حيث x (k) هي المدخلات الأولية في الخطوة الزمنية k (k) هي المخرجات المصفاة عند الخطوة الزمنية كا هو ثابت بين 0 و 1، وعادة ما بين 0.8 و 0.99. (a-1) أو يسمى أحيانا 8220smoothing ثابت 8221. بالنسبة إلى الأنظمة ذات الخطوة الزمنية الثابتة T بين العينات، يتم حساب الثبات 8220a8221 وتخزينه للراحة فقط عندما يحدد مطور التطبيق قيمة جديدة للوقت المطلوب. وبالنسبة إلى الأنظمة التي تحتوي على عينات من البيانات على فترات غير منتظمة، يجب استخدام الدالة الأسية أعلاه مع كل خطوة زمنية، حيث T هو الوقت منذ العينة السابقة. وعادة ما يتم تهيئة خرج المرشح لتتناسب مع المدخلات الأولى. كما يقترب الوقت الثابت 0، يذهب إلى الصفر، لذلك ليس هناك تصفية 8211 الإخراج يساوي المدخلات الجديدة. كما يحصل الوقت ثابت كبير جدا، نهج 1، بحيث يتم تجاهل المدخلات الجديدة تقريبا 8211 تصفية الثقيلة جدا. يمكن إعادة ترتيب معادلة الفلتر أعلاه إلى المعادلة التالية: مصحح التنبؤات: هذا النموذج يجعل من الواضح أن تقدير المتغير (خرج المرشح) يتنبأ بأنه لم يتغير عن التقدير السابق y (k-1) زائدا مصطلح تصحيح على 8220innovation 8221 غير متوقعة - الفرق بين المدخلات الجديدة x (ك) والتنبؤ ذ (ك -1). هذا النموذج هو أيضا نتيجة اشتقاق المرشح الأسي كحالة خاصة بسيطة لمرشح كالمان. وهو الحل الأمثل لمشكلة تقدير مع مجموعة معينة من الافتراضات. استجابة الخطوة طريقة واحدة لتصور تشغيل المرشح الأسي هو رسم ردها مع مرور الوقت إلى إدخال خطوة. وهذا هو، بدءا من المدخلات والمخرجات مرشح في 0، يتم تغيير قيمة المدخلات فجأة إلى 1. يتم رسم القيم الناتجة أدناه: في المؤامرة المذكورة أعلاه، يتم تقسيم الوقت على الوقت تاو ثابت التصفية حتى تتمكن من التنبؤ بسهولة أكبر نتائج أي فترة زمنية، لأي قيمة من الوقت مرشح الوقت. بعد وقت يساوي ثابت الوقت، يرتفع خرج المرشح إلى 63.21 من قيمته النهائية. بعد وقت يساوي 2 الثوابت الوقت، ترتفع القيمة إلى 86.47 من قيمته النهائية. النواتج بعد مرات يساوي 3،4، والثوابت 5 الوقت هي 95.02، 98.17، و 99.33 من القيمة النهائية، على التوالي. وبما أن المرشح خطي، فهذا يعني أن هذه النسب المئوية يمكن استخدامها لأي حجم من تغير الخطوة، وليس فقط لقيمة 1 المستخدمة هنا. على الرغم من أن الاستجابة خطوة من الناحية النظرية يأخذ وقتا لانهائي، من الناحية العملية، والتفكير في المرشح الأسي كما 98-99 8220done8221 الاستجابة بعد وقت يساوي 4 إلى 5 الثوابت الوقت مرشح. الاختلافات على الفلتر الأسي هناك تباين في المرشح الأسي يسمى الفلتر الأسي 8220nonlineear8221 ويبر، 1980. يهدف إلى تصفية الضوضاء بشكل كبير ضمن سعة 8220typical8221 معينة، ولكن بعد ذلك يستجيب بسرعة أكبر للتغييرات الأكبر حجما. حقوق الطبع والنشر 2010 - 2013، غريغ ستانلي شارك هذه الصفحة: سيغنال بروسسينغديجيتال فيلترس المرشحات الرقمية هي من قبل إسينس سامبلد سيستمز. ويتم تمثيل إشارات الدخل والإخراج بواسطة عينات ذات مسافة زمنية متساوية. وتتميز مرشحات الاستجابة النبضية المحدودة (فير) باستجابة زمنية تعتمد فقط على عدد معين من العينات الأخيرة لإشارة الدخل. بعبارات أخرى: بمجرد انخفاض إشارة الدخل إلى الصفر، فإن خرج المرشح سيفعل الشيء نفسه بعد عدد معين من فترات أخذ العينات. ويعطى الناتج y (k) بواسطة توليفة خطية من عينات المدخلات الأخيرة x (k i). المعاملات ب (ط) تعطي الوزن للجمع. كما أنها تتوافق مع معاملات البسط لوظيفة نقل مرشح نطاق z. ويبين الشكل التالي مرشاح معلومات الطيران من النظام N 1: بالنسبة لمرشحات الطور الخطي، تكون قيم المعامل متماثلة حول الوسط، ويمكن طي خط التأخير مرة أخرى حول هذه النقطة الوسطى من أجل تقليل عدد المضاعفات. وظيفة نقل مرشحات فير فقط بوسيس البسط. وهذا يتوافق مع عامل تصفية كل صفر. وعادة ما تتطلب فلاتر معلومات الطيران طلبات عالية، في حدود عدة مئات. وبالتالي فإن اختيار هذا النوع من المرشحات تحتاج إلى كمية كبيرة من الأجهزة أو وحدة المعالجة المركزية. وعلى الرغم من ذلك، فإن أحد أسباب اختيار تطبيق فلتر الهواء هو القدرة على تحقيق استجابة مرحلة خطية، والتي يمكن أن تكون شرطا في بعض الحالات. ومع ذلك، فإن مصمم فيتر لديه إمكانية لاختيار مرشحات إير مع الخطي مرحلة جيدة في نطاق التمرير، مثل مرشحات بسل. أو لتصميم مرشح الالتفافية لتصحيح استجابة المرحلة من مرشح إير القياسية. موفينغ فاميلي فيلترس (ما) تعد نماذج المتوسط المتحرك (ما) نماذج عملية في الشكل: عمليات ما هي تمثيل بديل لمرشحات فير. متوسط الفلاتر تعديل مرشح يحسب متوسط عينات N الأخيرة لإشارة هو أبسط شكل لمرشاح معلومات الطيران، مع تساوي جميع المعاملات. وتعطى دالة النقل لمرشاح متوسط بواسطة: تحتوي دالة النقل لمرشاح متوسط على أصفار متساوية المسافات متساوية على طول محور التردد. ومع ذلك، يتم ملثمين الصفر في العاصمة من قبل القطب من المرشح. وبالتالي، هناك الفص أكبر دس الذي يمثل التمرير مرشح. مرشحات تكامل معالجات متكاملة (سيك) مرشحات تكامل كومباكت-كومب (سيك) هي تقنية خاصة لتنفيذ الفلاتر المتوسطة الموضوعة في السلسلة. وضع سلسلة من المرشحات المتوسطة يعزز الفص الأول في العاصمة مقارنة مع جميع الفصوص الأخرى. ويطبق مرشح سيك وظيفة نقل المرشحات المتوسطة N، ويحسب كل منها متوسط عينات R M. وبالتالي فإن وظيفة النقل الخاصة بها تعطى بواسطة: تستخدم مرشحات سيك لتخفيض عدد عينات الإشارة من عامل R أو، في حالات أخرى، لإعادة تشكيل إشارة بتردد أقل، وإبعاد عينات R 1 من R. ويشير العامل M إلى مقدار الفص الأول الذي تستخدمه الإشارة. عدد مراحل الترشيح المتوسطة، N. يشير إلى مدى انحطاط نطاقات التردد الأخرى، على حساب وظيفة نقل أقل مسطح حول العاصمة. هيكل سيك يسمح لتنفيذ النظام بأكمله مع فقط المضافين والسجلات، وليس باستخدام أي مضاعفات التي هي الجشع من حيث الأجهزة. ويسمح خفض الامتصاص بعامل R بزيادة دقة الإشارة عن طريق البتات لوغ 2 (R) (R). الفلاتر الكنسيية تقوم الفلاتر الكونية بتنفيذ وظيفة نقل المرشح بعدد من عناصر التأخير مساوية لترتيب التصفية ومضاعف واحد لكل معامل بسط ومضاعف واحد لكل معامل مقاسم وسلسلة من المضافين. وعلى نحو مشابه للمرشحات النشيطة للمرشحات النشيطة، أظهر هذا النوع من الدارات حساسية شديدة لقيم العناصر: كان للتغير الصغير في المعاملات تأثير كبير على وظيفة النقل. هنا أيضا، تحول تصميم المرشحات النشطة من المرشحات الكنسي إلى هياكل أخرى مثل سلاسل من الدرجة الثانية أقسام أو قفزة المرشحات. سلسلة من أقسام النظام الثاني تحرير قسم ترتيب الثاني. وغالبا ما يشار إلى بيكاد. بتنفيذ وظيفة نقل النظام الثاني. يمكن تقسيم وظيفة نقل مرشح إلى نتاج وظائف نقل كل المرتبطة زوج من الأعمدة وربما زوج من الأصفار. إذا كان ترتيب وظائف النقل غريبا، فيجب إضافة قسم من الدرجة الأولى إلى السلسلة. ويرتبط هذا القسم إلى القطب الحقيقي وإلى الصفر الحقيقي إذا كان هناك واحد. شكل مباشر 1 شكل مباشر 2 شكل مباشر 1 شكل مباشر منقول 2 منقول الشكل المباشر 2 المنقول من الشكل التالي مثير للاهتمام بشكل خاص من حيث الأجهزة المطلوبة وكذلك إشارة وكمية معامل. ديجيتال ليبفروج فيلترس إديت فيلتر ستروكتور إديت مرشحات القفزة الرقمية قاعدة على محاكاة التناظرية القفز النشط مرشحات. ويتمثل الحافز لهذا الخيار في الإرث من خصائص حساسية التمرير الممتازة لدائرة السلم الأصلية. ويمكن تنفيذ المرشح القفزات السفلي ذي القطب الواحد من الدرجة الرابعة التالي كدائرة رقمية عن طريق استبدال وحدات التكامل التناظري بالمراكم. استبدال تكامل التناظرية مع المراكم يتوافق مع تبسيط تحويل Z إلى z 1 ق T. والتي هي المصطلحين الأولين من سلسلة تايلور من z ه س ص (ق تي). وهذا التقريب جيد بما فيه الكفاية للمرشحات حيث يكون تردد أخذ العينات أعلى بكثير من عرض نطاق الإشارة. نقل وظيفة تحرير تمثيل مساحة الدولة من فيلتر السابقة يمكن أن تكون مكتوبة على النحو التالي: من هذه المعادلة مجموعة، يمكن للمرء أن يكتب A، B، C، D المصفوفات على النحو التالي: من هذا التمثيل، وأدوات معالجة الإشارات مثل أوكتاف أو ماتلاب تسمح لرسم استجابة تردد المرشحات أو لفحص أصفارها وأعمدةها. في مرشح القفزة الرقمية، والقيم النسبية للمعاملات تعيين شكل وظيفة نقل (بوترورث. تشيبيشيف.)، في حين أن اتساعها تعيين تردد قطع. تقسيم جميع المعاملات بعامل اثنين من نوبات تردد قطع أسفل واحد اوكتاف (أيضا عامل من اثنين). حالة خاصة هو مرشح بتروورث 3 أردي النظام الذي لديه الثوابت الوقت مع القيم النسبية من 1 و 12 و 1. بسبب ذلك، يمكن تنفيذ هذا المرشح في الأجهزة دون أي مضاعف، ولكن باستخدام التحولات بدلا من ذلك. مرشحات الانحدار الذاتي (أر) تعد نماذج الانحدار الذاتي (أر) نماذج عملية في النموذج: حيث u (n) هو خرج النموذج، x (n) هو مدخل النموذج، و u (n - m) عينات من قيمة الانتاج النموذجي. وتسمى هذه الفلاتر الانحدار الذاتي لأن قيم الإخراج تحسب على أساس الانحدارات لقيم الإخراج السابقة. يمكن تمثيل عمليات أر بواسطة مرشح كل القطب. مرشحات أرما تحرير الانحدار الذاتي المرشحات المتحركة (أرما) هي مجموعات من مرشحات أر و ما. ويعطى خرج المرشح كخطوة خطية من كل من المدخلات المرجحة وعينات الانتاج المرجحة: يمكن اعتبار عمليات أرما كمرشح إير إر، مع كل من الأقطاب والأصفار. ويفضل المرشحات أر في كثير من الحالات لأنه يمكن تحليلها باستخدام معادلات يول ووكر. ويمكن تحليل عمليات ما و أرما من خلال معادلات غير خطية معقدة يصعب دراستها ونموذجها. إذا كان لدينا عملية أر مع معامل الوزن الصنبور (متجه من (n)، (ن - 1).) إدخال x (n). ومخرجات y (n). يمكننا استخدام معادلات يول ووكر. نقول أن x 2 هو تباين إشارة الدخل. تعاملنا مع إشارة بيانات المدخلات كإشارة عشوائية، حتى لو كانت إشارة حتمية، لأننا لا نعرف ما هي القيمة ستكون حتى نحصل عليها. يمكننا التعبير عن معادلات يول-ووكر على النحو التالي: حيث R هو مصفوفة الارتباط المتبادل لإخراج العملية و r هو مصفوفة الارتباط الذاتي لإنتاج العملية: التباين تحرير يمكننا أن نوضح ما يلي: يمكننا التعبير عن التباين إشارة الدخل كما: أو ، والتوسع والاستبدال في r (0). يمكننا أن نربط تباين الناتج من العملية إلى التباين المدخلات: 2.1 نماذج المتوسط المتحرك (نماذج ما) نماذج السلاسل الزمنية المعروفة باسم نماذج أريما قد تشمل مصطلحات الانحدار الذاتي و المتوسط المتحرك المتوسط. في الأسبوع الأول، تعلمنا مصطلح الانحدار الذاتي في نموذج سلسلة زمنية للمتغير x t قيمة متخلفة من x t. على سبيل المثال، مصطلح الانحدار الذاتي 1 تأخر هو x t-1 (مضروبا في معامل). يحدد هذا الدرس مصطلحات المتوسط المتحرك. متوسط المتوسط المتحرك في نموذج السلاسل الزمنية هو خطأ سابق (مضروبا في معامل). واسمحوا (W أوفيرزيت N (0، sigma2w))، بمعنى أن w t هي متطابقة، موزعة بشكل مستقل، ولكل منها توزيع طبيعي يعني 0 و نفس التباين. (1) هو (شت مو وت theta1w) نموذج المتوسط المتحرك الثاني، الذي يشير إليه ما (2) هو (شت مو wtta1w theta2w) ، التي يرمز إليها ما (q) هو (شت مو وت theta1w ثيتاو w النقاط ثيتاكو) ملاحظة. العديد من الكتب المدرسية والبرامج البرمجية تحدد النموذج مع علامات سلبية قبل الشروط. هذا لا يغير الخصائص النظرية العامة للنموذج، على الرغم من أنه لا يقلب علامات جبري لقيم معامل المقدرة و (غير مسقوفة) المصطلحات في صيغ ل أكفس والتباينات. تحتاج إلى التحقق من البرنامج للتحقق مما إذا كانت العلامات السلبية أو الإيجابية قد استخدمت من أجل كتابة النموذج المقدر بشكل صحيح. يستخدم R إشارات إيجابية في نموذجه الأساسي، كما نفعل هنا. الخصائص النظرية لسلسلة زمنية مع ما (1) نموذج لاحظ أن القيمة غير صفرية الوحيدة في أسف النظري هو تأخر 1. جميع أوتوكوريلاتيونس الأخرى هي 0. وبالتالي عينة أسف مع ارتباط ذاتي كبير فقط في تأخر 1 هو مؤشر لنموذج ما (1) ممكن. للطلاب المهتمين، والبراهين من هذه الخصائص هي ملحق لهذه النشرة. مثال 1 افترض أن نموذج ما (1) هو x t 10 w t .7 w t-1. حيث (الوزن الزائد N (0،1)). وبالتالي فإن معامل 1 0.7. وتعطى أسف النظرية من قبل مؤامرة من هذا أسف يتبع. المؤامرة فقط أظهرت هو أسف النظري ل ما (1) مع 1 0.7. ومن الناحية العملية، لن توفر العينة عادة مثل هذا النمط الواضح. باستخدام R، قمنا بمحاكاة n 100 قيم عينة باستخدام النموذج x t 10 w t .7 w t-1 حيث w t إيد N (0،1). لهذه المحاكاة، وتتبع مؤامرة سلسلة زمنية من بيانات العينة. لا يمكننا أن نقول الكثير من هذه المؤامرة. وتأتي العينة أسف للبيانات المحاكاة. ونحن نرى ارتفاع في التأخر 1 تليها عموما القيم غير الهامة للتخلف الماضي 1. لاحظ أن العينة أسف لا يطابق النمط النظري لل ما الأساسية (1)، وهو أن جميع أوتوكوريلاتيونس للتخلف الماضي 1 سيكون 0.ويمكن أن يكون لعينة مختلفة عينة أسف مختلفة قليلا مبينة أدناه، ولكن من المرجح أن يكون لها نفس السمات العامة. الخصائص النظرية لسلسلة زمنية مع نموذج ما (2) بالنسبة للنموذج ما (2)، تكون الخصائص النظرية كما يلي: لاحظ أن القيم غير الصفرية الوحيدة في أسف النظرية هي للتخلف 1 و 2. أوتوكوريلاتيونس للتخلف العالي هي 0 لذلك، فإن عينة أسف مع أوتوكوريلاتيونس كبيرة في التأخر 1 و 2، ولكن أوتوكوريلاتيونس غير هامة لفترات أعلى يشير إلى احتمال ما (2) نموذج. إيد N (0،1). المعاملات هي 1 0.5 و 2 0.3. لأن هذا هو ما (2)، فإن أسف النظرية لها قيم غير صفرية فقط في التأخر 1 و 2. قيم أوتوكوريلاتيونس غير نازيرو هي مؤامرة من أسف النظري يتبع. وكما هو الحال دائما تقريبا، فإن بيانات العينة لن تتصرف تماما تماما كما النظرية. قمنا بمحاكاة n 150 قيم عينة للنموذج x t 10 w t .5 w t-1 .3 w t-2. حيث w t إيد N (0،1). وتأتي سلسلة المسلسلات الزمنية للبيانات. كما هو الحال مع مؤامرة سلسلة زمنية ل ما (1) عينة البيانات، لا يمكن أن أقول الكثير من ذلك. وتأتي العينة أسف للبيانات المحاكاة. النمط هو نموذجي في الحالات التي قد يكون نموذج ما (2) مفيدة. هناك اثنين من ارتفاع كبير إحصائيا في التأخر 1 و 2 تليها القيم غير الهامة للتخلف الأخرى. لاحظ أنه نظرا لخطأ أخذ العينات، فإن عينة أسف لا تتطابق مع النمط النظري بالضبط. أسف للجنرال ما (q) النماذج A خاصية نماذج ما (q) بشكل عام هو أن هناك أوتوكوريلاتيونس غير الصفرية للفواصل q الأولى و أوتوكوريلاتيونس 0 لجميع التأخر غ س. عدم تفرد الاتصال بين قيم 1 و (rho1) في ما (1) نموذج. في نموذج ما (1)، لأي قيمة 1. فإن المعاملة 1 المتبادلة تعطي نفس القيمة كمثال، تستخدم 0.5 ل 1. ثم استخدم 1 (0.5) 2 ل 1. تحصل على (rho1) 0.4 في كلتا الحالتين. لتلبية التقييد النظري يسمى العكوسة. فإننا نقيد نماذج ما (1) التي لها قيم ذات قيمة مطلقة أقل من 1. وفي المثال الذي أعطيت للتو، ستكون قيمة 0،5 قيمة معلمة مسموح بها، بينما لن تكون 1 10،5 2. قابلية نماذج ما يقال إن نموذج ما قابل للانعكاس إذا كان معادلا جبريا لنموذج أر غير محدود. من خلال التقارب، ونحن نعني أن معاملات أر تنخفض إلى 0 ونحن نعود إلى الوراء في الوقت المناسب. القابلية للانعكاس هي قيود مبرمجة في برامج السلاسل الزمنية المستخدمة لتقدير معاملات النماذج بشروط ما. انها ليست شيئا أننا تحقق في في تحليل البيانات. يتم إعطاء معلومات إضافية حول تقييد إنفرتيبيليتي ل ما (1) نماذج في الملحق. نظرية النظرية المتقدمة. وبالنسبة لنموذج ما (q) مع أسف محدد، لا يوجد سوى نموذج واحد قابل للانعكاس. والشرط الضروري للعكس هو أن للمعاملات قيم مثل المعادلة 1- 1 y-. - q y q 0 لديها حلول ل y التي تقع خارج دائرة الوحدة. رمز R للأمثلة في المثال 1، قمنا بتخطيط أسف النظري للنموذج x t 10 w t. 7w t-1. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. وكانت الأوامر R المستخدمة في رسم أسف النظرية: acfma1ARMAacf (ماك (0.7)، lag. max10) 10 تأخر من أسف ل ما (1) مع thta1 0.7 متخلفة 0: 10 يخلق متغير اسمه التأخر التي تتراوح من 0 إلى 10. مؤامرة (1)، و xlemc1 (1، 10)، ييلبر، تيله، أسف الرئيسي ل ما (1) مع theta1 0.7) أبلين (h0) يضيف محور أفقي إلى المؤامرة يحدد الأمر الأول أسف ويخزن في كائن اسمه acfma1 (اختيارنا من الاسم). تتخطى مؤامرات الأمر المؤامرة (الأمر الثالث) مقابل قيم أكف للتخلف من 1 إلى 10. تسمي معلمة يلب المحور الصادي وتضع المعلمة الرئيسية عنوانا على المؤامرة. لمعرفة القيم العددية لل أسف ببساطة استخدام acfma1 الأمر. وقد أجريت المحاكاة والمؤامرات مع الأوامر التالية. xcarima. sim (n150، قائمة (ماك (0.7))) يحاكي n 150 القيم من ما (1) xxc10 يضيف 10 لجعل المتوسط 10. الافتراضية الافتراضية المحاكاة يعني 0. مؤامرة (x، تايب، مينسيمولاتد ما (1) البيانات) أسف (x، زليمك (1،10)، ميناكف لبيانات العينة المحاكاة) في المثال 2، قمنا بتخطيط أكف النظري للنموذج شت 10 w .5 w t-1 .3 w t-2. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. كانت الأوامر R المستخدمة acfma2ARMAacf (ماك (0.5،0.3)، lag. max10) acfma2 متخلفة 0: 10 مؤامرة (تأخر، acfma2، زليمك (1،10)، يلابر، تيبه، أسف الرئيسي ل ما (2) مع ثيتا 0.5، (h0) xcarima. sim (n150، قائمة (ماك (0.5، 0.3))) xxc10 مؤامرة (x، تيب، الرئيسية مقلد ما (2) سلسلة أسف (x، زليمك (1،10) ميناكف لمحاكاة ما (2) البيانات) الملحق: دليل على خصائص ما (1) للطلاب المهتمين، وهنا هي البراهين للخصائص النظرية للنموذج ما (1). الفرق: النص (شت) النص (wt theta1 w) 0 النص (وت) النص (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) عندما h 1، التعبير السابق 1 ث 2. لأي h 2، التعبير السابق 0 والسبب هو أنه، بحكم تعريف استقلالها. E (w w w j) 0 لأي k j. علاوة على ذلك، لأن w w t يعني 0، E (w j w j) E (w j 2) w 2. لسلسلة زمنية، تطبيق هذه النتيجة للحصول على أسف المذكورة أعلاه. نموذج ما لا يمكن عكسه هو واحد التي يمكن أن تكون مكتوبة كنموذج لانهائية أجل أر التي تتقارب بحيث معاملات أر تتلاقى إلى 0 ونحن نتحرك بلا حدود مرة أخرى في الوقت المناسب. تثبت جيدا إنفرتيبيليتي ل ما (1) نموذج. ثم نستبدل العلاقة (2) ل w t-1 في المعادلة (1) (3) (زت وت theta1 (z - theta1w) wttata1z - theta2w) في الوقت t-2. المعادلة (2) يصبح نحن ثم بديلا العلاقة (4) ل w t-2 في المعادلة (3) (زت وت ثيتا z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) إذا كان علينا أن نواصل ( (زت وت theta1 z - theta21z thta31z - theta41z النقاط) لاحظ مع ذلك أنه إذا كان 1 1، فإن المعاملات ضرب ضرب من z زيادة (بلا حدود) في الحجم ونحن نعود إلى الوراء في زمن. ولمنع ذلك، نحتاج إلى 1 لتر 1. هذا هو شرط لنموذج ما (1) قابل للانعكاس. لانهائية النظام ما نموذج في الأسبوع 3، نرى جيدا أن أر (1) نموذج يمكن تحويلها إلى أمر لانهائي ما نموذج: (شت - mu وت phi1w نقاط phi21w phik1 ث النقاط مجموع phij1w) هذا الجمع من الماضي شروط الضوضاء البيضاء هو معروف كما التمثيل السببي لل أر (1). وبعبارة أخرى، x t هو نوع خاص من ما مع عدد لا حصر له من المصطلحات تعود في الوقت المناسب. وهذا ما يسمى أمر لا حصر له ما أو ما (). أمر محدود ما هو أمر لانهائي أر وأي أمر محدود أر هو أمر لانهائي ما. أذكر في الأسبوع 1، لاحظنا أن شرط ل أر ثابتة (1) هو أن 1 lt1. يتيح حساب فار (x t) باستخدام التمثيل السببي. هذه الخطوة الأخيرة تستخدم حقيقة أساسية حول السلسلة الهندسية التي تتطلب (phi1lt1) وإلا فإن السلسلة تتباعد. التنقل
No comments:
Post a Comment